Software Design for Particles in Incompressible
Flow

Dan Martin and Phil Colella
Applied Numerical Algorithms Group

June 7, 2004

1 Overview

The addition of particles to the existing Incompressible Navier-Stokes code
will primarily involve the addition of the forcing function due to the particles

(P f) to the computation of the provisional velocity field @*. This will involve
two main additions to the code:

1. The particles themselves will need to be added to the code, in the form
of a LevelData<BinFab<DragParticle> >, where the DragParticle
class is our application-specific derivative of the base BinItem class.

2. A ParticleProjector class will be added to compute an approxima-
tion to P f to use as a source term for the velocity update.

In addition to the ParticleProjector and DragParticle classes men-
tioned above, we will also define a discreteDeltaFn class to encapsulate the
discrete d-function o,.

We may also find it useful to define a MLC-solver class to encapsulate
the MLC algorithm.

A basic diagram of the class relationships between the Chombo and AMRINS-
particles classes is depicted in Figure 1.



AMRNavierStokesParticles

m_projector: class CCProjector
m_particleProj: class ParticleProjector

u_old, u_new,
lambda old, : classLevelData<FArrayBox>

lambda_new

m_particles: Level Data<BinFab<DragParticle> >

advance()
computeAdvectionVelocities()
advectScaar()
predictVelocities()
postTimeStep()

regrid()

postRegrid()
initializeGlobal Pressure()
initializel evel Pressure()
initial Data()
postlnitialize()
computeDt()

computel nitial Dt()

CCProjector

phi, pi,
e sync, :classLevelData<FArrayBox>
e lambda

level M acProject()
applyMacCorrection()
LevelProject()
correctCCVelocities()
doSyncOperations()
doSyncProjection()
computeV DCorrection()
doPostRegridOps()
initialVelocityProject()
initialLevel Project()

ParticleProjector

projectForce()

Figure 1: Software configuration diagram for the AMRINS particle code
showing basic relationships between AMRINS-particle code classes and

Chombo classes



2 Class Outline

2.1 The DiscreteDeltaFn class

The DiscreteDeltaFn class will encapsulate the discrete d—function used to
spread the force to the mesh. This class also can compute auxiliary quantities
which are functions of the numerical definition of §, used.

e DiscreteDeltaFn* clone() const
Create a clone of this DiscreteDeltaFn, with the same properties.

e Real evaluateDelta(Real a_radius)
Evaluate the discrete J-function ().

e Real integralDelta(Real a_radius)
Returns the integral of ¢, also known as @:

Qr) = / 5.(s)sP1ds,

where D is SpaceDim.

e Real computeK(RealVect a_radius, int a_idir, int a_jdir)
Returns the kernel K;;(r).

e Real computeLapDelta(Real a_radius)
Returns Ad.(r). Not sure if I really need this, but it’s included for
completeness at the moment.

e void sumForce(FArrayBox& a_sum,
const RealVect& a_force,
const Box& a_box,
const RealVect& a_position,
const RealVect& a_origin,
Real a_dx)

Computes i fjK;j over box and places it in a_sum, which is a
SpaceDim-component FArrayBox. More efficient than calling computekK
on a cell-by-cell basis.

e void sumForce(FArrayBox& a_sum,
const RealVect& a_force,

3



const Box& a_box,

int a_dir,

int a_destComp,

const RealVect& a_position,
const RealVect& a_origin,
Real a_dx)

Computes Zj fjKi; over box and places it in a_sum, which is a
SpaceDim-component FArrayBox. More efficient than calling computek
on a cell-by-cell basis; this version computes a single (a_dir) compo-
nent and places it in the a_destComp component of a_sum.

2.2 The PolynomialDelta:public DiscreteDeltaFn class

Derived class which instantiates the DiscreteDeltaFn class using a Polyno-
mial.

2.3 The DragParticle class

The DragParticle class will encapsulate the definition of the particles used
for ths application. It contains a DiscreteDeltaFn object to specify the
spreading function. Data members include f, the force vector for the particle,
and the position, velocity, and mass of the particle, «, #, and m along with
the local fluid velocity and a body force (weight).

Functions include the following:

e DragParticle(const RealVect& a_position,
const RealVect& a_velocity,
const DiscreteDeltaFn* a_deltaFnPtr)

Full constructor.

e void setVel(RealVect& a_vel)
sets the velocity field @® of the particle

e void setFluidVel(const RealVect& a_vel)
sets the local fluid velocity

e void setBodyForce(const RealVect& a_force)
Sets the body force (due to gravity, for example) which is added to any
computed drag force.



setMass(Real a_mass)
sets the mass of the particle.

void updatePosition(RealVect& a_position)
updates the position *) of the particle.

void computeDragForce(RealVect& a_flowVelocity)
computes the drag force f¥) based on the flow velocity and the particle
velocity.

Real computeK(RealVect a_x, int a_idir, int a_jdir)
(k)
computes K5’ (z).

Real computeProjForce(RealVect a_x, int a_idir)

returns
(k) M
Z dmgd )

for this particle. Note that thls computes the drag force exerted by the
particle on the surrounding fluid.

void computeProjForce(FArrayBox& a_force,
const Box& a_box,
Real a_dx,
RealVect& a_origin) const

increments a_force over a_box with ZJD o fdmg]K(’C (x) for this par-
ticle. More efficient than calling the pointwise version of this function.
Note that this computes the drag force exerted by the particle on the

surrounding fluid.

RealVect totalForce() const
returns the total force on the particle

RealVect dragForce() const
returns the drag force on the particle

RealVect bodyForce() const
returns the body force on the particle.

Real mass() const
returns the mass of the particle.



e DragParticle* clone() const
creates a clone of this particle, with the same properties (drag coeffi-
cient, discrete delta function, mass) as this one.

2.4 The ParticleProjector class

The ParticleProjector class encapsulates the functionality needed to take
the individual forces in the particles and apply them to the mesh in an
approximation to P f, which may then be used as a source term for the
Navier-Stokes advance.

Public Functions:

e void define(const DisjointBoxLayout& a_grids,
const DisjointBoxLayout& a_crseGrids,
const ProblemDomain& a_domain,
int a_nRefCrse, Real a_dx)

Defines class object.
e void projectForce(LevelData<FArrayBox>& a_force,
LevelData<BinFab<DragParticle> >& a_particles)

Given the collection of DragParticles in a_particles, returns the
projection of the force at cell centers in a_force, suitable for use as a
source term for the INS advance.

e void setSpreadingRadius(const Real a_rad)
Sets spreading radius for MLC part of algorithm

e void setCorrectionRadius(const Real a_rad)
Sets correction radius for MLC part of algorithm.

Protected Functions:

e void computeD(LevelData<FArrayBox>& a_D,
LevelData<BinFab<DragParticle> >& a_particles)

e void solveForProjForce(LevelData<FArrayBox>& a_projectedForce,
LevelData<FArrayBox>& a_D,
const LevelData<BinFab<DragParticle> >& a_particles)



e void addImageEffects(FArrayBox& a_rhs,
int a_buffer,
int a_dir) const

e void doInfiniteDomainSolve(FArrayBox& a_phi,
const FArrayBox& a_rhs) const



